Covariant Lyapunov vectors on the Lorenz attractor

CLVs on Lorenz attractor

This is a demonstration for solving CLV problem CLVProblem and receiving the results via the iterator-based APIs indexed_forward_dynamics!, indexed_backward_dynamics!, CLV, etc.

using LyapunovExponents

num_rec = 20
sampling_interval = 5
num_clv = num_rec * sampling_interval
prob = CLVProblem(LyapunovExponents.lorenz_63().prob,
                  num_forward_tran = 4000,
                  num_backward_tran = 4000,
                  num_clv = num_clv)
solver = init(prob)

x_history = [Vector{Float64}(3) for _ in 1:num_rec]
G_history = [Matrix{Float64}(3, 3) for _ in 1:num_rec]
C_history = [Matrix{Float64}(3, 3) for _ in 1:num_rec]

forward = @time forward_dynamics!(solver)
@time for (i, G) in indexed_forward_dynamics!(forward)
    k, r = divrem(i, sampling_interval)
    j = k + 1
    if r == 1 && j <= num_rec
        x_history[j] .= phase_state(forward)
        G_history[j] .= G
    end
end

@time for (i, C) in @time indexed_backward_dynamics!(solver)
    k, r = divrem(i, sampling_interval)
    j = k + 1
    if r == 1
        C_history[j] .= C
    end
end

CLV_history = [G * C for (G, C) in zip(G_history, C_history)]

using DifferentialEquations
sol = solve(ODEProblem(
    prob.phase_prob.f,
    x_history[1],
    (0.0, prob.phase_prob.tspan[end] * num_clv * 3),
    prob.phase_prob.p
))

using Plots
plt = plot(sol, vars=(2, 3), linewidth=0.5, linealpha=0.5, label="")
vec_scale = 3
for (n, (x, V)) in enumerate(zip(x_history, CLV_history))
    for i in 1:3
        plot!(plt,
              [x[2], x[2] + vec_scale * V[2, i]],
              [x[3], x[3] + vec_scale * V[3, i]],
              color = i + 1,
              arrow = 0.4,
              label = (n == 1 ? "CLV$i" : ""))
    end
end
plt