Example dynamical systems
#
LyapunovExponents.Examples.ExampleBase.LEDemo
— Type.
LEDemo(example::LEExample; <keyword arguments>)
Here is an example code for constructing an example dynamical system, calculate its LEs and plot them:
using LyapunovExponents
using Plots
demo = solve!(LyapunovExponents.lorenz_63())
plot(demo)
Create a LEDemo
holding an example
and an appropriate LEProblem
created from the example
.
#
LyapunovExponents.Examples.ExampleBase.LEExample
— Type.
A type to hold an example dynamical system and its known Lyapunov exponents.
Discrete systems
#
LyapunovExponents.Examples.HenonMap.henon_map
— Function.
Return a LEDemo
for the Hénon map.
- M. Hénon, Commun. Math. Phys. Phys. 50, 69-77 (1976)
- http://sprott.physics.wisc.edu/chaos/comchaos.htm
- https://en.wikipedia.org/wiki/H%C3%A9non_map
#
LyapunovExponents.Examples.LoziMap.lozi_map
— Function.
Return a LEDemo
for the Lozi map.
#
LyapunovExponents.Examples.StandardMap.standard_map
— Function.
Return a LEDemo
for the Chirikov standard map.
- B. V. Chirikov, Physics Reports 52, 263-379 (1979)
- http://sprott.physics.wisc.edu/chaos/comchaos.htm
- https://en.wikipedia.org/wiki/Standard_map
- http://www.scholarpedia.org/article/Chirikov_standard_map
#
LyapunovExponents.Examples.BakersMap.bakers_map
— Function.
Baker's map
#
LyapunovExponents.Examples.ArnoldCatMap.arnold_cat_map
— Function.
Return a LEDemo
for the Arnold's cat map
Continuous systems
#
LyapunovExponents.Examples.Lorenz63.lorenz_63
— Function.
Return a LEDemo
for the Lorenz system.
- https://en.wikipedia.org/wiki/Lorenz_system
- http://sprott.physics.wisc.edu/chaos/comchaos.htm
- E. N. Lorenz, J. Atmos. Sci. 20, 130-141 (1963)
#
LyapunovExponents.Examples.LinzSprott99.linz_sprott_99
— Function.
Return a LEDemo
for the simplest piecewise linear dissipative chaotic flow.
- http://sprott.physics.wisc.edu/chaos/comchaos.htm
- S. J. Linz and J. C. Sprott, Phys. Lett. A 259, 240-245 (1999)
#
LyapunovExponents.Examples.VanDerPol.van_der_pol
— Function.
Return a LEDemo
for the van der Pol oscillator with periodic forcing.
.known_exponents
are extracted from Figure 6 of Geist, Parlitz & Lauterborn (1990).
- http://scholarpedia.org/article/Van_der_Pol_oscillator
- https://en.wikipedia.org/wiki/Van_der_Pol_oscillator
- van der Pol and van der Mark. “Frequency Demultiplication.” Nature 120, no. 3019 (September 1927): 363. https://doi.org/10.1038/120363a0.
- Parlitz, Ulrich, and Werner Lauterborn. “Period-Doubling Cascades and Devil’s Staircases of the Driven van Der Pol Oscillator.” Physical Review A 36, no. 3 (August 1, 1987): 1428–34. https://doi.org/10.1103/PhysRevA.36.1428. (Figure 10a)
- Geist, K., Parlitz, U., & Lauterborn, W. (1990). Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics, 83, 875–893. https://doi.org/10.1143/PTP.83.875. (Figure 6)
#
LyapunovExponents.Examples.RNN.beer_95
— Function.
Return a LEDemo
for a low-dimensional chaotic continuous-time recurrent neural networks by Beer (1995).
- Beer, R. D. (1995). On the dynamics of small continuous-time recurrent neural networks. Adapt. Behav., 3(4), 469–509. https://doi.org/10.1177/105971239500300405. (Figure 9D)